

Moonpie: Love2D Framework

Moonpie is a framework designed for easy development within the Love2D engine.
It is focused around providing great UX with responsive designs for flexible layouts of components.
At the same time it allows for flexibility in how components are rendered. There is also support
with libraries for collections, math, entity-component-systems, etc…

Contents:

	Getting Started

	moonpie
	moonpie.class

	moonpie.keyboard

	moonpie.event_system

	moonpie.collections
	Array

	Grid

	moonpie.collections.iterators

	moonpie.entities

	moonpie.events
	Available Events

	moonpie.graphics
	moonpie.graphics.colors

	moonpie.graphics.font

	moonpie.graphics.image

	moonpie.math
	Functions

	moonpie.math.cards

	moonpie.math.ipoint

	moonpie.math.rectangle

	moonpie.state
	Add Action Validator

	Binding Components

	moonpie.sorts

	moonpie.tables

	moonpie.test_helpers
	New Assertions

	Array Extensions

	Component Extensions

	moonpie.ui
	moonpie.ui.components

	moonpie.ui.styles

	Default Styles

	Built In Components

	body

	image

	textbox

	moonpie.utility

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Moonpie-template is the easiest way to start a project using Moonpie.

$ There is a command that will clone this and set up project

moonpie

This is the entry point into the API and provides access to the rest of the framework. This eliminates the
need to require specific modules for operation of the framework.

moonpie = require "moonpie"

moonpie.class

Utilized the middleclass library for functionality:
https://github.com/kikito/middleclass

moonpie.keyboard

Provides access to keyboard routines, including the ability to configure hotkeys that will trigger a function.

local keyboard = require "moonpie.keyboard"
keyboard:hotkey("a", function() print("Pressed A") end)
keyboard:hotkey("shift+a", function() print("Pressed shift(either)+a") end)
Keyboard:hotkey("alt+ctrl+shift+8", function() print("alt, ctrl, shift, 8 ... all at the same time") end)

	hotkey(keycode, function)

	Maps a function that will be triggered on keypress. Only one function can be mapped to the callback.
keycode can be formatted with context keys separated by a plus: alt, ctrl, shift In that order
Examples: “a”, “ctrl+a”, “ctrl+shift+a”, “alt+a”

moonpie.event_system

A simple mechanism for creating loosely coupled components that can dispatch events. Events are registered onto the
system to be handled. Subscribers can register to specific events. Those events can then be dispatched to with
additional arguments as necessary.

Event messages are formatted the same as actions to the state management store. This keeps things consistent but
allows for different purposes for dispatching.

local my_callback_function = function(data)
 print(data.payload)
end

local events = require "moonpie.event_system"
events.register("hello")
events.subscribe("hello", my_callback_function)
events.dispatch({ type = "hello", payload = "extra_data" })

moonpie.collections

Various collections and structures to help provide functionality to lua tables.

local a_list = moonpie.collections.list:new()
a_list:add("stuff", 1, 4, "more-stuff")
if a_list:contains(4) then
 print "It does!"
end

Array

Provides an easy way to manage multidimensional arrays without knowing the bounds ahead of time. The
Array is more of an “Array Bag”, where you can place values based on multidimensional coordinates, but
iterating over the values isn’t really supported at this time. Grid is a better implementation for 2D
Arrays that have known dimensions.

local Array = require "moonpie.collections.array"
local a = Array:new(3) -- Define a 3-dimensional array
a(3, 2, 1, "bar")
print(a(3, 2, 1)) -- # bar

Grid

Provides a 2D array element that makes it easier to track and assign elements for 2D lists.
Initialized to a specific size and can handle default values when the value has not been set.

local Grid = require "moonpie.collections.grid"
local g = Grid:new(10, 10, "default")
g:set(3, 2, "hello")
print(g:get(3, 2)) -- "hello"
print(g:get(8, 2)) -- "default"

Properties & Methods

	default

	The default returned if the location requested is empty

	get(x, y)

	Retrieves the value at the specified location. If empty, return default or nil

	height

	The height of the grid data

	set(x, y, value)

	Sets the value at the specified location, overriding any previous value assigned there.

	width

	The width of the grid data

moonpie.collections.iterators

Iterators provide a variety of functions for iterating over tables. They should work with any index based table.

The cycle iterator allows continuous looping over an array. It also provides the ability to move backwards
through the list.

moonpie.collections.iterators.cycle(array_table, count)
array_table = any table with an index list
count = the limit of cycles to perform

local set = { 1, 2, 3, 4 }

for value, index in moonpie.collections.iterators.cycle(set, 2) do
 print(value)
end

--
-- Output:
--
-- 1
-- 2
-- 3
-- 4
-- 1
-- 2
-- 3
-- 4

local set = { 1, 2, 3, 4 }
local cycle_iter = moonpie.collections.iterators.cycle(set)
print(cycle_iter.previous()) -- Output: 4
print(cycle_iter.previous()) -- Output: 3

moonpie.entities

An ECS style framework that works with moonpie state management

moonpie.events

Events are triggered at various times during interactions with
Love2d. These are designed to provide a way of looping in components
and behaviors to certain timings without relying on a difficult
to maintain call sequence.

Love2D is the ultimate trigger source for events and these do
need to be passed manually into Moonpie. This allows the most
control possible for engineering solutions while keeping code
upstream clean.

Available Events

local function my_callback()
 print("called")
end

moonpie.events.beforeUpdate:add(my_callback)

function love.update()
 moonpie.update()
end

-- Output
 called

moonpie.graphics

moonpie.graphics.colors

Provides access to a color library with hundreds of default colors. Also allows for certain functionality
such as lightening colors or making gradients.

moonpie.graphics.font

Manages fonts making it easy to load and reuse font resources. Fonts can be referenced by a name that makes it
easy to switch out the font without impacting code or ui elements.

local Font = require "moonpie.graphics.font"
Font:register("assets/fonts/my_font.ttf", "title")
local f = Font:get("title")
local text = love.graphics.newText(f, "Hello World")
love.graphics.draw(text, 20, 20)

moonpie.graphics.image

Provides functionality to access and manage images in a way that limits creating duplicate copies

moonpie.graphics.image.load(path)

moonpie.math

A basic library for some math functions.

Functions

	floor(…)

	Returns the floor value for a list of values. Useful for flooring return values from a function

	line(x0, y0, x1, y1)

	Returns an iterator that will plot lines along the requested points.

local maths = require "moonpie.math"

for x, y in maths.line(1, 3, 8, 18) do
 print(x, y) -- Output each x, y coordinate
end

moonpie.math.cards

Provides a basic implementation of a deck of cards with a Fisher-Yates shuffler to randomize the elements.

local maths = require "moonpie.math"
local deck = maths.cards.newDeck { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
deck:shuffle()
local hand = deck:deal(3)
-- hand == { 4, 9, 2 }
-- deck == { 5, 1, 3, 7, 6, 8 }

moonpie.math.ipoint

iPoint is a simple 3d coordinate point that locks to integer based coordinates. It attempts to be efficient by only
having

moonpie.math.rectangle

Provides a basic implementation for rectangles with additional helpers

	new(x,y,width,height)

	Returns a new rectangle with the specified dimensions

	left(self)

	Returns the leftmost coordinate (x)

	right(self)

	Returns the rightmost coordinate (x+width)

	top(self)

	Returns the topmost coordinate (y)

	bottom(self)

	Returns the bottommost coordinate (y+height)

	[true] intersects(self, rect)

	Returns true if the two rectangles intersects

	[rect] overlap(self, rect)

	Returns a new rectangle that is the overlapping region between 2 rectangles

	[x,y] center(self)

	Returns the coordinates in the middle of the rectangle

moonpie.state

An implementation of a concept similar to redux that is used in react and javascript implementations.
This provides a store that can be configured with reducers that handle state. Actions can be dispatched
to set up changing the the status of state.

Add Action Validator

A helper to append validations to actions. Sometimes there is value in reusing previous existing actions, but
providing an additional method to validate the action.

Binding Components

A common issue is to bind components to state changes to refresh or respond to updated data. Sometimes components
are not designed from the ground up to be connected to the store. Binding allows taking advantage of dynamic
updates from the store to refresh the component.

local Components = require "moonpie.ui.components"
local c = bind(
 Components.text { text = "My Name" }, -- The created component to bind
 function(component, state) -- the binding routine
 -- Any logic and behavior could be applied here
 component:update { text = state.name }
 end)

 .
 .

 store.dispatch({ updateName = "foobar" })

moonpie.sorts

moonpie.tables

The tables utilities provides various mini-functions for helpful operations.

	tables.count(set, func)

	Returns the count of items that match the comparison function passed in.

local set = { 1, 2, 3, 4, 5, 6 }
local compare = function(v) return v % 2 == 0 end

print(tables.count(set, compare))
-- 3

	tables.deepCompare(tbl1, tbl2, ignoreMT)

	Tests the values in the the 2 tables to see if they look the same without having to be the same table instance.

	tables.keysToList(tbl)

	Returns a table in array form where all the entries from tbl are outputted into a list formats.

	tables.popRandom(list)

	Selects a random item out of the list, removes it and returns the selected item.

	tables.slice(list, start, [end])

	Returns a slice of the elements from the array. If end is not provided, defaults to end of array.
If a negative number is passed into start, it takes from the end of the array.

	tables.swap(tbl, i, j)

	Swaps two elements positions in the table

	tables.take(tbl, count)

	Takes the specified count of elements from the front of the table. Because of the reshuffle of the table performance
is not optimal for many operations during critical cycles.

	tables.toString(tbl)

	Outputs a human readable form of the table. Useful for debugging purposes.

	tables.unpack(tbl)

	The Lua unpack routine provided by the library but because sometimes it’s based on table and sometimes global
this just simplifies tracking it.

moonpie.test_helpers

Test helpers and extra assertions are provided for the Busted <http://olivinelabs.com/busted/> testing framework.

New Assertions

	callable(expectedCallable)

	Returns true if the value passed in is a callable table or a function.

assert.callable(function() end) -- true
assert.callable({}) -- false
assert.callable(setmetatable({}, { __call = function() end })) -- true

Array Extensions

	array_includes(value, table, compare)

	Checks whether the value exists in the table. A custom comparison function can be provide to search for the value

it("has some array elements", function()
 local test = { 1, 2, 3, 4 }
 assert.array_includes(1, test)
end)

Component Extensions

-- Code to test
local components = require "moonpie.ui.components"
local my_comp = components("my_comp", function()
 return {
 components.text(),
 components.text { id = "12345" }
 }
end)

it("contains a component", function()
 assert.contains_component("text", my_comp())
end)

it("contains a component with id", function()
 assert.contains_component_with_id("12345", my_comp())
end)

Matchers

Matchers are used when validating arguments to spies.

	matches.in_range(low, high)

	Returns true if the value is in the range specified. Automatically sorts the low/high values by size when passed in.

Mock Store

Mocks the redux style store that manages state. Allowing easier testing of components that are dependent on the store.

describe("My test harness", function()
 local mock_store = require "moonpie.test_helpers.mock_store"
 local initial_state = { values = true }
 local store = mock_store(initial_state)

 it("can track dispatches", function()
 system_under_test.do_thing_that_dispatches()
 assert.equals(1, #store.get_actions("action_type"))
 end)
end)

General helpers

	spy_to_func

	Converts a spy routine into a pure function. This can be helpful in situations where the code under test responds
differently to tables vs functions.

moonpie.ui

moonpie.ui.components

Components represent any kind of control or ui element. They are designed
similar to React components. Each component should handle a specific demand
on the UI. These components should be nested and reused as appropriate.

Default components are defined for very commonly used elements, but you
should plan on extending the components with ones specific for your game.

For example, a possible hierarchy of components on a title screen:

	Title screen

	Background Animation

	Title

	Menu

	Button (New Game)

	Button (Resume)

	Button (Quit)

Defining Components

Components are defined by calling the components initializer and passing a name
for the component and a function block that returns a table to represent a new
instance of the component.

local components = require "moonpie.ui.components"
local widget = components("widget", function(props)
 return {
 -- Properties can be defined on the component
 styles = "custom-style",
 width = "75%",

 -- This nests a child component within this component
 components.h1 { text = "Heading" },
 components.text { text = "Hello World!" },
 }
end)

moonpie.render("ui", widget()) -- sets the UI to render this component

Component Methods

These are methods that can be used or overridden to provide additional
behavior for the UI

	addStyle(self, style)

	Adds a new style tag to the component.

	drawComponent(self)

	A method for executing custom drawing commands. Love will already be configured
to translate to the appropriate x/y coordinates on the screen so all drawing
commands should be assumed to start based on the top-left of the content area
for the component.

	findByID(self, id)

	Searches the component’s child hierarchy to find the first matching identifier.

local found = component:findByID("sampleComponentID")

	hide(self)

	Marks a component as hidden and removes from layout and rendering

	isHidden(self)

	Returns true if a component is marked as hidden.

	mounted(self)

	A method that is called when a component has been added to the render tree. Layout
and other information will not be calculated at this point but the node should be
aware of its place in the render tree.

	remove(self)

	Flags the component to be removed from the render tree.

	removeStyle(self, style)

	Removes a style tag from the component.

	show(self)

	Marks a component as visible and will show up in layouts and rendering.

	unmounted(self)

	A method called when a component is destroyed from the render tree. Used for any
kind of global cleanup necessary when the component is removed that would be difficult
for the garbage collector to know about. For example, global event handlers or lambdas.

Component Properties

	data

	This can be used to pass in customized initialization data that will be stored in the component.

local c = Components.h1 { data = { a = "a", b = 3 } }
print(c.data.a) -- "a"
print(c.data.b) -- 3

	logger

	Easy access to the logger library

Component Events

	onUpdate(component, changes)

	Called whenever the component receives an update call.

local callbackRoutine = function(component, changes) print(changes.newValue) end
local c = component { onUpdate = callbackRoutine }
c:update({ newValue = "foo" })
-- prints "foo"

	onMouseMove(component, x, y)

	Called whenever the mouse moves around over the component. x, y are screen coordinates

moonpie.ui.styles

Styles are a way of setting common properties that are easy to change across the site. These work similar
to CSS in HTML though without the full selector behavior. Styles are applied directly to an element.
When calculating values some properties do inherit from the parent to make it easier to specify items like
fonts to be defaulted through.

Style Properties

	display [inline, inline-block, block]

	Describes how the component should calculate its width. The main ones to use our inline and block.
block is the default display setting, this will expand the component to the maximum width available. Determined
by the parent. inline will size the component based on the width of the children.

	textwrap

	specifies that whether text should wrap. Default behavior if nil is to wrap text. If set to ‘none’ will disable wrapping

Default Styles

Buttons

	button-small

	Makes a smaller button for those tinier button needs

	button-primary

	A style that uses the primary color for the background of the button

	button-warning

	A style that uses a gold/yellow background color

	button-danger

	A style that uses a red/fuschia background color

Built In Components

body

The body component defaults to a full screen component that uses the background color by default. This will
create a clean empty background for the rest of the components to render upon. The only custom parameter takes
the contents to render.

Properties

	contents

	A table that will be rendered out within the body

Example

local Components = require "moonpie.ui.components"

local body = Components.body {
 content = {
 -- custom screen elements
 }
}

image

Properties

	source

	The path to the image to be loaded

textbox

Methods

	getText(self)

	Returns the text currently in the text box

	setText(self, value, skipUpdateCursor)

	Sets the text within the textbox to the specific value. By default, the cursor will move to the end of the string,
passing true to skipUpdateCursor will bypass this.

moonpie.utility

	ensureKey(tbl, key, default)

	Makes sure that a table contains a key with a default value. Useful for state management in the store to make sure
that values exist

	isCallable(val)

	Returns true if the parameter is either a function or a table with a metatable that implements __call.

local utility = require "moonpie.utility"
utility.isCallable(function() end) -- true
utility.isCallable({}) -- false
utility.isCallable(setmetatable({}, { __call = function() end })) -- true

	swapFunction(tbl, functionName, override)

	Replaces a table function with a new routine. This is most useful for testing scenarios to mock an API. :revert()
can be used to unwind the swapped function.

local utility = require "moonpie.utility
local tbl = { f = function() end }
local new = function() end
utility.swapFunction(tbl, "f", new)
tbl:f() -- calls new(tbl)

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Moonpie: Love2D Framework

 		
 Getting Started

 		
 moonpie

 		
 moonpie.class

 		
 moonpie.keyboard

 		
 moonpie.event_system

 		
 moonpie.collections

 		
 Array

 		
 Grid

 		
 Properties & Methods

 		
 moonpie.collections.iterators

 		
 moonpie.entities

 		
 moonpie.events

 		
 Available Events

 		
 moonpie.graphics

 		
 moonpie.graphics.colors

 		
 moonpie.graphics.font

 		
 moonpie.graphics.image

 		
 moonpie.math

 		
 Functions

 		
 moonpie.math.cards

 		
 moonpie.math.ipoint

 		
 moonpie.math.rectangle

 		
 moonpie.state

 		
 Add Action Validator

 		
 Binding Components

 		
 moonpie.sorts

 		
 moonpie.tables

 		
 moonpie.test_helpers

 		
 New Assertions

 		
 Array Extensions

 		
 Component Extensions

 		
 Matchers

 		
 Mock Store

 		
 General helpers

 		
 moonpie.ui

 		
 moonpie.ui.components

 		
 Defining Components

 		
 Component Methods

 		
 moonpie.ui.styles

 		
 Style Properties

 		
 Default Styles

 		
 Buttons

 		
 Built In Components

 		
 body

 		
 Properties

 		
 image

 		
 Properties

 		
 textbox

 		
 Methods

 		
 moonpie.utility

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

