

Moonpie: Love2D Framework

Moonpie is a framework designed for easy development within the Love2D engine.
It is focused around providing great UX with responsive designs for flexible layouts of components.
At the same time it allows for flexibility in how components are rendered. There is also support
with libraries for collections, math, entity-component-systems, etc…

Contents:

	Getting Started

	moonpie
	moonpie.class

	moonpie.event_system

	moonpie.collections
	moonpie.collections.iterators

	moonpie.ecs

	moonpie.events
	Available Events

	moonpie.graphics
	moonpie.graphics.colors

	moonpie.graphics.image

	moonpie.math

	moonpie.redux

	moonpie.sorts

	moonpie.tables

	moonpie.test_helpers
	Array Extensions

	Component Extensions

	moonpie.ui
	moonpie.ui.styles

	Default Styles

	moonpie.ui.components
	Defining Components

	Component Methods

	Component Properties

	moonpie.utility

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Moonpie-template is the easiest way to start a project using Moonpie.

$ There is a command that will clone this and set up project

moonpie

This is the entry point into the API and provides access to the rest of the framework. This eliminates the
need to require specific modules for operation of the framework.

moonpie = require "moonpie"

moonpie.class

This is sets up a metatable for a table that provides basic OOP functionality. It’s not meant to be an overly
robust implementation as much as a lightweight overlay.

local animal = moonpie.class({})
function animal:constructor(name)
 self.name = name
end

local duck = animal:new("duck")
print(duck.name)

moonpie.event_system

A simple mechanism for creating loosely coupled components that can dispatch events. Events are registered onto the
system to be handled. Subscribers can register to specific events. Those events can then be dispatched to with
additional arguments as necessary.

Event messages are formatted the same as actions to the state management store. This keeps things consistent but
allows for different purposes for dispatching.

local my_callback_function = function(data)
 print(data.payload)
end

local events = require "moonpie.event_system"
events.register("hello")
events.subscribe("hello", my_callback_function)
events.dispatch({ type = "hello", payload = "extra_data" })

moonpie.collections

Various collections and structures to help provide functionality to lua tables.

local a_list = moonpie.collections.list:new()
a_list:add("stuff", 1, 4, "more-stuff")
if a_list:contains(4) then
 print "It does!"
end

moonpie.collections.iterators

Iterators provide a variety of functions for iterating over tables. They should work with any index based table.

moonpie.collections.iterators.cycle

The cycle iterator allows continuous looping over an array. It also provides the ability to move backwards
through the list.

moonpie.collections.iterators.cycle(array_table, count)
array_table = any table with an index list
count = the limit of cycles to perform

local set = { 1, 2, 3, 4 }

for value, index in moonpie.collections.iterators.cycle(set, 2) do
 print(value)
end

--
-- Output:
--
-- 1
-- 2
-- 3
-- 4
-- 1
-- 2
-- 3
-- 4

local set = { 1, 2, 3, 4 }
local cycle_iter = moonpie.collections.iterators.cycle(set)
print(cycle_iter.previous()) -- Output: 4
print(cycle_iter.previous()) -- Output: 3

moonpie.ecs

The Moonpie Entity Component System is a lightweight approach to handling entities for processing.

local moonpie = require "moonpie"
local world = moonpie.ecs.world:new()

world:add_systems(...)
world:add_entities(...)
world:update("some_method")

moonpie.events

Events are triggered at various times during interactions with
Love2d. These are designed to provide a way of looping in components
and behaviors to certain timings without relying on a difficult
to maintain call sequence.

Love2D is the ultimate trigger source for events and these do
need to be passed manually into Moonpie. This allows the most
control possible for engineering solutions while keeping code
upstream clean.

Available Events

local function my_callback()
 print("called")
end

moonpie.events.before_update:add(my_callback)

function love.update()
 moonpie.update()
end

-- Output
 called

moonpie.graphics

moonpie.graphics.colors

Provides access to a color library with hundreds of default colors. Also allows for certain functionality
such as lightening colors or making gradients.

moonpie.graphics.image

Provides functionality to access and manage images in a way that limits creating duplicate copies

moonpie.graphics.image.load(path)

moonpie.math

A basic library for some math functions.

moonpie.redux

An implementation of a concept similar to redux that is used in react and javascript implementations.
This provides a store that can be configured with reducers that handle state. Actions can be dispatched
to set up changing the the status of state.

moonpie.sorts

moonpie.tables

The tables utilities provides various mini-functions for helpful operations.

	tables.keys_to_list(tbl)

	Returns a table in array form where all the entries from tbl are outputted into a list formats.

moonpie.test_helpers

Test helpers and extra assertions are provided for the Busted <http://olivinelabs.com/busted/> testing framework.

Array Extensions

A number of array helpers are available:

it("has some array elements", function()
 local test = { 1, 2, 3, 4 }
 assert.array_includes(1, test)
end)

Component Extensions

-- Code to test
local components = require "moonpie.ui.components"
local my_comp = components("my_comp", function()
 return {
 components.text(),
 components.text { id = "12345" }
 }
end)

it("contains a component", function()
 assert.contains_component("text", my_comp())
end)

it("contains a component with id", function()
 assert.contains_component_with_id("12345", my_comp())
end)

Mock Store

Mocks the redux style store that manages state. Allowing easier testing of components that are dependent on the store.

describe("My test harness", function()
 local mock_store = require "moonpie.test_helpers.mock_store"
 local initial_state = { values = true }
 local store = mock_store(initial_state)

 it("can track dispatches", function()
 system_under_test.do_thing_that_dispatches()
 assert.equals(1, #store.get_actions("action_type"))
 end)
end)

General helpers

	spy_to_func

	Converts a spy routine into a pure function. This can be helpful in situations where the code under test responds
differently to tables vs functions.

moonpie.ui

moonpie.ui.styles

Styles are a way of setting common properties that are easy to change across the site. These work similar
to CSS in HTML though without the full selector behavior. Styles are applied directly to an element.
When calculating values some properties do inherit from the parent to make it easier to specify items like
fonts to be defaulted through.

Default Styles

Buttons

	button-small

	Makes a smaller button for those tinier button needs

	button-primary

	A style that uses the primary color for the background of the button

	button-warning

	A style that uses a gold/yellow background color

	button-danger

	A style that uses a red/fuschia background color

moonpie.ui.components

Components represent any kind of control or ui element. They are designed
similar to React components. Each component should handle a specific demand
on the UI. These components should be nested and reused as appropriate.

Default components are defined for very commonly used elements, but you
should plan on extending the components with ones specific for your game.

For example, a possible hierarchy of components on a title screen:

	Title screen

	Background Animation

	Title

	Menu

	Button (New Game)

	Button (Resume)

	Button (Quit)

Defining Components

Components are defined by calling the components initializer and passing a name
for the component and a function block that returns a table to represent a new
instance of the component.

local components = require "moonpie.ui.components"
local widget = components("widget", function(props)
 return {
 -- Properties can be defined on the component
 styles = "custom-style",
 width = "75%",

 -- This nests a child component within this component
 components.h1 { text = "Heading" },
 components.text { text = "Hello World!" },
 }
end)

moonpie.render("ui", widget()) -- sets the UI to render this component

Component Methods

These are methods that can be used or overridden to provide additional
behavior for the UI

	draw_component(self)

	A method for executing custom drawing commands. Love will already be configured
to translate to the appropriate x/y coordinates on the screen so all drawing
commands should be assumed to start based on the top-left of the content area
for the component.

	mounted(self)

	A method that is called when a component has been added to the render tree. Layout
and other information will not be calculated at this point but the node should be
aware of its place in the render tree.

	remove

	Flags the component to be removed from the render tree.

	unmounted(self)

	A method called when a component is destroyed from the render tree. Used for any
kind of global cleanup necessary when the component is removed that would be difficult
for the garbage collector to know about. For example, global event handlers or lambdas.

Component Properties

	logger

	Easy access to the logger library

moonpie.utility

	is_callable(val)

	returns true if the parameter is either a function or a table with a metatable that implements __call.

Index

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Moonpie: Love2D Framework

 		
 Getting Started

 		
 moonpie

 		
 moonpie.class

 		
 moonpie.event_system

 		
 moonpie.collections

 		
 moonpie.collections.iterators

 		
 moonpie.collections.iterators.cycle

 		
 moonpie.ecs

 		
 moonpie.events

 		
 Available Events

 		
 moonpie.graphics

 		
 moonpie.graphics.colors

 		
 moonpie.graphics.image

 		
 moonpie.math

 		
 moonpie.redux

 		
 moonpie.sorts

 		
 moonpie.tables

 		
 moonpie.test_helpers

 		
 Array Extensions

 		
 Component Extensions

 		
 Mock Store

 		
 General helpers

 		
 moonpie.ui

 		
 moonpie.ui.styles

 		
 Default Styles

 		
 Buttons

 		
 moonpie.ui.components

 		
 Defining Components

 		
 Component Methods

 		
 Component Properties

 		
 moonpie.utility

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

